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BACKGROUND: Results from studies on residential health effects of livestock farming are inconsistent, potentially due to simple exposure proxies used
(e.g., livestock density). Accuracy of these proxies compared with measured exposure concentrations is unknown.

OBJECTIVES: We aimed to assess spatial variation of endotoxin in PM10 (particulate matter ≤10 lm) at residential level in a livestock-dense area,
compare simple livestock exposure proxies to measured endotoxin concentrations, and evaluate whether land-use regression (LUR) can be used to
explain spatial variation of endotoxin.

METHODS: The study area (3,000 km2) was located in Netherlands. Ambient PM10 was collected at 61 residential sites representing a variety of sur-
rounding livestock-related characteristics. Three to four 2-wk averaged samples were collected at each site. A local reference site was used for tempo-
ral variation adjustment. Samples were analyzed for PM10 mass by weighing and for endotoxin by using the limulus amebocyte lysate assay. Three
LUR models were developed, first a model based on general livestock-related GIS predictors only, followed by models that also considered species-
specific predictors and farm type–specific predictors.

RESULTS: Variation in concentrations measured between sites was substantial for endotoxin and more limited for PM10 (coefficient of variation: 43%,
8%, respectively); spatial patterns differed considerably. Simple exposure proxies were associated with endotoxin concentrations although spatial vari-
ation explained was modest (R2 < 26%). LUR models using a combination of animal-specific livestock-related characteristics performed markedly
better, with up to 64% explained spatial variation.

CONCLUSION: The considerable spatial variation of ambient endotoxin concentrations measured in a livestock-dense area can largely be explained by
LUR modeling based on livestock-related characteristics. Application of endotoxin LUR models seems promising for residential exposure estimation
within health studies. https://doi.org/10.1289/EHP2252

Introduction
There is concern about the influence of air pollution from live-
stock farms on public health. Several studies have shown associa-
tions between livestock farming exposure proxies and respiratory
health of neighboring residents (Borlée et al. 2015; Elliott et al.
2004; Mirabelli et al. 2006; Pavilonis et al. 2013b; Radon et al.
2007; Schiffman et al. 2005; Schinasi et al. 2011; Schulze
et al. 2011; Sigurdarson and Kline 2006; Smit et al. 2014; Wing
and Wolf 2000). Livestock farming is associated with emissions
of gases and primary and secondary (formed from gases such as
ammonia) particulates, including bioaerosols (Cambra-López
et al. 2010; Hamon et al. 2012; Seedorf et al. 1998).

Bioaerosols are aerosolized dust particles originating from
microbial, animal or plant materials. One very potent bioaerosol
is endotoxin, an inflammatory component of the cell wall of
Gram-negative bacteria (Liebers et al. 2008). Endotoxins are
absorbed onto the surface of particles, mainly coarse particulate
matter (Chen and Hildemann 2009; Morgenstern et al. 2006;
Soukup and Becker 2001). Inhalation of increased endotoxin lev-
els can cause respiratory effects and even systemic effects, result-
ing in a variety of symptoms (Basinas et al. 2015; Liebers et al.

2008). High endotoxin concentrations have been measured on
farms (Clark et al. 1983; Jonges et al. 2015; Seedorf et al. 1998;
Thorne et al. 2009), and negative effects on respiratory health
were found among farmers (Basinas et al. 2015). Endotoxin is
ventilated outward from farms using particulate matter as a vec-
tor (Pillai and Ricke 2002). Elevated endotoxin concentrations
have been measured in the direct vicinity of farms; however,
the concentrations measured outside the farms were much
lower compared with levels measured inside (Jonges et al. 2015;
Thorne et al. 2009). Still, the effect of livestock farming on endo-
toxin concentrations at the residential level is largely unknown
because knowledge on emission and dispersion is scarce.
Respiratory health effects observed in residents living near live-
stock farms have been suggested to be associated with endotoxin
emitted from these farms (Heederik et al. 2007; Mirabelli et al.
2006; Schinasi et al. 2011; Schulze et al. 2006; Smit et al. 2017).

Different exposure proxies have been used to represent resi-
dential exposure to emissions from livestock farms in studies in
populations living in the vicinity of livestock production units.
Exposure proxies used included farm density of the region/county
(Elliott et al. 2004; Sigurdarson and Kline 2006; Wing and Wolf
2000), weighted distance to nearest farm (Borlée et al. 2015;
Mirabelli et al. 2006; Smit et al. 2014), and farm density in buf-
fers of various sizes ranging between studies from 500 m to 5 km
(Borlée et al. 2015; Pavilonis et al. 2013b; Radon et al. 2007;
Smit et al. 2014). Some studies evaluated all farm types com-
bined (Pavilonis et al. 2013b; Radon et al. 2007), others differen-
tiated farm types by animal species (Borlée et al. 2015; Elliott
et al. 2004; Smit et al. 2014; Wing and Wolf 2000) or focused on
one particular animal species [pigs (Mirabelli et al. 2006;
Sigurdarson and Kline 2006)]. In general, only farm numbers
were taken into account, except for the study of Mirabelli et al.
(2006), which also took into account herd size. Accuracy of ex-
posure proxies in comparison with measured livestock associated
exposures is unknown. This hampers interpretation of results and
comparisons between epidemiological studies.
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Knowledge of spatial variation, gained by performing meas-
urements at a large number of sites, is essential to increase insight
into residential exposure. Few studies have been performed that
assess endotoxin concentrations in ambient air, and few of these
took into account the relation between agriculture and ambient
air levels of endotoxin (de Rooij et al. 2017; Mueller-Anneling
et al. 2004; Pavilonis et al. 2013a; Schulze et al. 2006; Tager
et al. 2010). Study limitations hampered identification of livestock-
related determinants. Until now, well-designed large-scale mea-
surement studies assessing spatial variation of endotoxin have been
lacking, largely due to the difficulties and costs associated with en-
dotoxin measurements. Measurement of the mass of particulate
matter (PM) ≤10 lm (PM10) is less challenging and provides
opportunities like real-time assessment. It is yet unknown whether
PM10 mass measurements represent spatial variation of livestock
endotoxin emissions well in a livestock-dense area that is without
other significant PMsources.

In-depth exposure assessment studies based on airborne
measurements focusing on urban air pollution related to long-
term health effects have been performed for many years. A
widely used technique in this field is land-use regression (LUR)
modeling (Beelen et al. 2013; de Hoogh et al. 2013; Eeftens et al.
2012a; Jerrett et al. 2005; Ryan and LeMasters 2007), a modeling
approach that uses geospatial predictor variables to explain spa-
tial contrasts in measured airborne concentrations. Recently this
technique has also proven useful in an urban environment for bio-
aerosols, namely allergenic pollen (Hjort et al. 2016).

We repeatedly measured concentrations of endotoxin in the
PM10 fraction in a livestock-dense area in Netherlands at 61 sites
representing a variety of livestock-related characteristics. Our
first aim was to assess spatial variation of endotoxin and PM10 in
a livestock-dense area. The second aim was to evaluate how well
exposure proxies used in epidemiological studies relate to meas-
ured concentrations. Our third aim was to assess whether the
LUR approach can be used for modeling measured endotoxin
concentrations in relation to livestock-related characteristics of
the surroundings in a rural area.

Methods

Strategy
The study area was situated in the southeast of Netherlands.
A large epidemiological study was started in 2012 in that region
aimed at assessing the health of residents living in livestock-
dense areas (Borlée et al. 2015, 2017). Measurement sites were
selected to represent the areas of residence of the health study
participants (Figure 1). From May 2014 to December 2015, am-
bient PM10 was collected repeatedly at 61 sites in residential gar-
dens. The measurement strategy was based on previous LUR
campaigns focusing on urban air pollution using a spatially
dense network of measured concentrations (Hoek et al. 2008).
Measurements were performed simultaneously at 10 sites per
run. The aim was to collect four 2-wk averaged samples per site
in different seasons. A reference site in the study area was set up
where measurements were taken continuously to account for tem-
poral variability. This enabled calculation of annual average con-
centrations for all sites, as previously reported (de Hoogh et al.
2013; Eeftens et al. 2012a). Geographical information system
(GIS) software (version 10.2.2; ArcGIS) was used to compute
general and detailed livestock characteristics of the surroundings.
Measurement sites were geocoded and plotted in ArcGIS in com-
bination with the geocoded livestock data. Coordinates of the
locations of all livestock farms and the number and species of li-
censed animals per farm in the year 2015 were used. These
were obtained from the provincial database of mandatory

environmental licenses for livestock keeping, as provided by the
provinces of Noord-Brabant (http://bvb.brabant.nl) and Limburg
(http://limburg.vaa.com/webbvb). LUR models for annual aver-
age concentrations of endotoxin and PM10 were developed based
on livestock-related GIS predictors by using a supervised step-
wise selection procedure for LUR modeling described previously
(Eeftens et al. 2012a).

Study Area
The study area (3,000 km2 in size) comprised regions of the
Netherlands with the highest livestock density. The study area
was situated in the provinces of Noord-Brabant and Limburg.
The number of farms in Noord-Brabant and Limburg is 13,670
and 3,490, respectively, on a surface of 5,081 km2 and 2,209 km2,
respectively, (provincial databases, http://bvb.brabant.nl and http://
limburg.vaa.com/webbvb). Farms are not equally distributed;
instead they are predominantly concentrated in the region where
the two provinces border (Figure 1). In Netherlands, livestock is
commonly kept in enclosed animal houses (average size of prem-
ises 12:8 ha in 2015), apart from some dairy cows, sheep, and
horses that also are kept on pastures during parts of the year (aver-
age size of premises 31:9 ha in 2015) (Centraal Bureau voor de
Statistiek 2017a). Sizes of farm premises are highly variable, as
are the number and size of animal houses per farm, which also
depend on the animal species kept. Most farms are specialized:
Only one animal species is kept, focusing on a specific product
(e.g., broiler farms, laying hen farms). The animal numbers kept
on a farm vary greatly; on average, the numbers kept on pig farms
and chicken farms were 2,600 and 52,000 respectively, in 2015
(Centraal Bureau voor de Statistiek 2017b).

Site Selection
Measurement sites were selected to cover a wide spatial contrast
in livestock farm density and animal species kept (see the “GIS
Predictors” section for details) in the rural areas of residence of
the health study participants. Four categories were made based
on the distance from the site to the nearest farm: <250 m,
250–500 m, 500–1,000 m, and >1,000 m. We chose to overrepre-
sent sites close to livestock farms to ensure coverageof the expected
highest local-scale air pollution variation in the vicinity of
farms. Sites were distributed as follows: 40% were <250 m, 35%
250–500 m, 18% 500–1,000 m, and 7% >1,000 m. Furthermore,
attention was paid to ensure that farm numbers of the main animal
species (cattle, poultry, and swine) had a distributionwithout major
outliers over the different sites. The reference site was selected
according to criteria previously described for urban LUR cam-
paigns: It was located in the same study area and not directly influ-
enced by local sources (Hoek et al. 2008). The distance from the
reference site to the nearest farmwas 1,200 m. At this location, two
PM10 samplerswereplaced side-by-side for simultaneousmeasure-
ments. These parallel measurements were used to gain insight into
the correlation between parallel samples and to increase the preci-
sionof temporal adjustments by taking averages.

Residents were visited by fieldworkers, informed about the
study, and invited to participate. To limit the influence of non-
livestock local PM10 sources, residences within 500 m of a high-
way, a railway, or an industrial area and 50 m of a busy provin-
cial/interurban road were not eligible for inclusion. Inspection of
the premises of those interested in participation was carried out
to ensure the location was suitable for the sampling equipment.
The equipment was placed as far away as possible from the near-
est road. According to the Central Committee on Research
involving Human Subjects (CCMO), this type of study does not
require approval from an ethics committee in the Netherlands.
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Measurements
Harvard impactors (Air Diagnostics and Engineering Inc., Naples,
ME, USA) were used to sample PM10 on Teflon filters (Teflo W/
ring 37 mm with 2-lm pore size; SKC, PA, USA). Samples were
taken at a height of 1:6 m, the average breathing height of
humans. A self-designed pump unit was used, and the flow was
maintained at 10 L=min by means of critical orifices, as described
previously (Eeftens et al. 2012b; see the European Study of
Cohorts for Air Pollution Effects (ESCAPE) project website
(http://www.escapeproject.eu/manuals/) on the standard operating
procedure for PM). The air flow was measured before and after
sampling using a calibrated rotameter. Pumps were installed to
sample 15 min of each hour during the 14-d period to avoid filter
overloading. Total run time of the pump was recorded by elapsed
time counters. Total sampling volume was calculated based on the
total sampling time and the average flow.

The aim was to sample each site successfully for four times
distributed over the four seasons. If a measurement at a site
failed, it was repeated in the next round. Failures could be due to
loss of power, a blocked pump, a damaged filter, or extreme
weather conditions. In addition, we excluded samples with a start
or end flow of <8:5 L=min and samples that did not fulfill sam-
pling duration criteria (within 33% margin of 84 h). Each mea-
surement period, a field blank control was placed at a different
site. This field blank filter underwent the same procedure except
that no air was drawn through the sampling device. All samples
were stored within 72 h after collection at −20�C.

Laboratory Analyses
PM10 mass was determined by gravimetric analysis using a
microbalance (1-lg precision), following the protocol described

by Eeftens et al. (2012b) [see ESCAPE project website (http://
www.escapeproject.eu/manuals/) on the standard operating pro-
cedure for weighing]. Briefly, filters were conditioned for 24 h
prior to pre- and post-weighing in a weighing room with con-
trolled temperature (21± 0:5�C) and relative humidity (35± 5%).
The limit of detection (LOD) was defined as three times the
standard deviation of the field blanks. Subsequently, samples
were processed for endotoxin extraction and analysis as described
by Spaan et al. (2008a). In short, filters were transferred to 50-mL
tubes (Greiner Bio-one) and 5 mL of pyrogen-free water (Aqua B.
Braun) supplemented with 0.05% Tween 20 (Calbiochem, USA).
After shaking for 1 h in an end-over-end roller, tubes were centri-
fuged at 1,000× g for 15 min and 1 mL of supernatant was stored
at −20�C. Endotoxin was analyzed by means of a limulus amebo-
cyte lysate (LAL) assay, and Tween 20 was not used in the assay
solution as per recommendations by Spaan et al. (2008a). Briefly,
100 lL of 25-times diluted sample was used in the quantitative ki-
netic chromogenic LAL assay (Lonza, Walkersville, MD, USA;
LAL-lysate lot number PL067KXRWM). For the endotoxin
assay, the LOD was defined as the smallest concentration that pro-
duced a signal in the calibration curve. Results are expressed as
endotoxin units (EU) per cubic meter of sampled air.

Adjustment for Temporal Variation
The reference site was used for adjustment of temporal variation
over the measurement period using the difference method as
described earlier (de Hoogh et al. 2013; Eeftens et al. 2012a).
Briefly, we calculated the difference in PM10 and endotoxin
concentrations measured at the reference site during each 2-wk
measurement period from average PM10 and endotoxin concen-
trations at the reference site over the entire study period (May

Figure 1. Geographical distribution of the 61 measurement sites in a livestock-dense area in Netherlands covering the geographical spread of the health study
areas. Note: Health study area: area where participants of the VGO study (Livestock Farming and Neighboring Residents’ Health Study) lived, see Borlée
et al. 2017 for maps of the study area depicting exact localization of residences. The figure was generated using ArcGIS (version 10.2.2; Esri) and the gray
background was sourced from Esri Nederland & Community Maps Contributors.
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2014–December 2015). We then subtracted this difference from
the PM10 and endotoxin concentrations measured at each indi-
vidual (nonreference) site during the same 2-wk period. Annual
average PM10 and endotoxin concentrations at each site were
computed as the arithmetic mean of the reference site-adjusted
concentrations for each site. Imputations were performed for
PM10 mass concentration at the reference site for the first mea-
surement period—thus at the start of the measurement cam-
paign in May 2014—because the installations at the reference
site functioned well during the whole measurement period
except for the first measurement period. PM10 mass concentra-
tions measured at the reference site were highly correlated
(Pearson correlation 0.92, p<0:001) with PM10 mass concen-
trations measured at a national monitoring station situated at a
10-km distance (see Figure S1). Based on PM10 levels measured
at the national monitoring station during the first measurement
period, the PM10 level was imputed for the reference site for that
period. No imputation for endotoxin was performed because the
variation of endotoxin concentrations at the reference site per pe-
riod could not be predicted from air monitoring data given that
endotoxin is not routinely monitored.

GIS Predictors
The number of animals and the number of farms and specific
farm types (cattle, pigs, poultry, goats, sheep, horses, fur animals)
in buffer zones of respectively 250, 500, 1,000, 3,000 m around
the sites were computed (Table 1; see also Table S1). Buffer size
was restricted to 3,000 m because of proximity to country bor-
ders; no livestock data was available for regions outside
Netherlands. We calculated the distance from each measurement
site to the nearest farm of each type, distance was taken into
account linear and inversed because the shape of the potential
association was unknown. We used circular buffers with the
number of farms or animals summed up in that buffer. To better
account for the dilution effect with increasing distance from the
source, we weighted the number of animals per species and the
number of farms per farm type within a 1,000-m or 3,000-m
buffer by the distance of each farm from the measurement site.

Statistical Analyses
Linear regression analyses were performed on annual average
concentrations of PM10 and endotoxin with multiple GIS-derived
livestock-related variables as input. Univariable analyses were
performed to compare simple livestock exposure proxies to meas-
ured endotoxin concentrations. To avoid models heavily affected
by a few observations, and to ensure enough power to analyze
the GIS-derived predictors, predictors with a value of zero for

>40 of the 61 sites (two-thirds of total number of sites) were
excluded from multivariable regression analyses. Each GIS vari-
able was truncated to its 95th percentile value. This was done
because various GIS predictors showed a right-skewed distribu-
tion among monitoring sites and because sensitivity analyses
using nontruncated predictors showed multiple modeling results
to be heavily affected by a few sites (data not shown).

Concentrations of PM10 and endotoxin approximated a normal
distribution. GIS variables were selected using a forward super-
vised stepwise selection procedure (Eeftens et al. 2012a). First, the
direction of the effect for the variables was determined (Table 1).
Then, with each step, the variable in the predefined direction with
the highest gain in adjusted R2 was entered in the model on condi-
tion that addition of the variable did not change the direction of
already-included variables. Model building was terminated when
inclusion of a variable did not improve the adjusted R2. Model
assumptions were checked for the resulting models including dis-
tribution of residuals and spatial autocorrelation through Moran’s I
statistic. Additionally, variables were removed if their p-value was
>0:10 and/or there was evidence of collinearity (variance inflation
factor >3). Cook’s Distance was checked for all model observa-
tions and examined further if higher than 1. Because of the
widely different scales of the different livestock-related varia-
bles assessed, each variable was scaled from the 10th percentile
to 90th percentile range, making direct comparisons of the
magnitude of effects of GIS variables possible.

The LUR modeling procedure was performed with different
levels of detail of livestock-related variables. First, an LUR
model was developed based on general livestock-related charac-
teristics (distance to nearest farm, number of farms within buffer
zones, and weighted distance number of all farms) because these
have been used frequently as exposure proxies in epidemiological
studies. Then, LUR modeling (procedure 2) was based on a larger
predictor set including more refined GIS predictors: animal spe-
cies–specific variables (farms and animal numbers of cattle, poul-
try, swine, goats, sheep, horses, and fur animals) that were
presented in addition to the general livestock-related characteris-
tics. Finally, LUR modeling (procedure 3) was carried out based
on all available GIS predictors, thus including farm type–specific
information for cattle, poultry and swine farms (dairy cattle, beef
cattle; broilers, laying hens, other; piglets, fattening pigs, sows).

Model development using a high number of predictor variables
has the risk of overfitting (Babyak 2004); therefore, several precau-
tionary measures were applied before and during modeling (i.e.,
highnumberof sites, predetermineddirectionof effect, limit of non-
zero values for predictors, tiered model procedure). In addition, af-
ter models were developed, validation methods were applied in
order to gain insight into possible overfitting. An internal validation

Table 1. Overview of the different types of livestock-related predictor variables, different buffer sizes, and determined direction of effect.

Predictor Categories Unit Buffer sizes (m) Direction of effect

Number of animals in a
buffer

Cow, pig, poultry, goat, sheep, horse, fur animals n 250, 500, 1,000, 3,000 +

Number of farms in a buffer All, cow (dairy, meat), pig (piglets, fattening pigs,
sows), poultry (laying hens, broiler, other), goat,
sheep, horse, fur animals

n 250, 500, 1,000, 3,000 +

Distance to nearest farm
(linear and inversed)

Any, cow, pig, poultry, goat, sheep, horse, fur animals −1�m and m−1 NA +

Number of animals in a
buffer weighted for distance
to site

Cow (dairy, meat), pig (piglets, fattening pigs, sows),
poultry (laying hens, broiler, other), goat, sheep,
horse, fur animals

R (n/m) 1,000, 3,000 +

Number of farms in a buffer
weighted for distance to site

All, cow (dairy, meat), pig (piglets, fattening pigs,
sows), poultry (laying hens, broiler, other), goat,
sheep, horse, fur animals

R (n/m) 1,000, 3,000 +

Note: Some variables were computed to be zero for all sites, meaning that this type of farm/animal was not present in the surroundings (defined by the buffer size taken into account)
around the measurement sites. NA, not available.
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method, leave one out cross validation (LOOCV), was applied to
evaluate overall model performance as in previous LUR studies
(Eeftens et al. 2012a). This method entails sequentially leaving out
each site from themodelwhile the included set of predictors are left
unchanged.Model robustnesswas further assessed by hold-out val-
idation (HV) because this method has been shown to be a more
stringent validation test (Basagaña et al. 2012; Wang et al. 2012).
Ten-fold HVwas performed using random selections of 90% of the
measurement sites. Additionally, we performed a sensitivity analy-
sis for LUR modeling procedure 3 by applying less restrictive
requirements with respect to the numbers of sites having a nonzero
value: 15% of the sites (instead of one-third of the sites) having a
nonzero value for each predictor. This way the effect of taking into
account smaller (250 m, especially) buffer sizes for the various ani-
mal species was investigated.

Results

Descriptives of Measurements
In total, 236 successful measurements were performed distributed
over 61 sites (number of sites measured for either three, four, or
five times was 10, 49, and 2, respectively). The installations at
the reference site functioned well during the whole measurement
period except for the first measurement period. Imputation was
performed for PM10 but not for endotoxin because the variation
of endotoxin concentrations at the reference site per period could
not be predicted from air monitoring data given that endotoxin is
not routinely monitored. For annual average computations of en-
dotoxin concentrations, measurements performed at sites in the
first period were not taken into account (computations based on
229 measurements; number of sites measured for either three,
four, or five times was 16, 44, and 1, respectively). For PM10, all
236 successfully performed measurements could be used for an-
nual average computations. For both endotoxin and PM10 23 of
24 sampling blanks were below the LOD; whereas the remaining
blank was just above the LOD for endotoxin as well as the LOD
for PM10. Because concentrations of all sampled filters were well
above the LOD, no adjustment for blanks was applied.

Two-week average endotoxin as well as PM10 mass concen-
trations showed clear variation over time (Figure 2). Endotoxin
and PM10 temporal variation patterns differed illustrated by the
low correlation between endotoxin and PM10 mass concentra-
tions at the reference site (Pearson correlation 0.19, p=0:37).
The coefficient of variation (CV) between side-by-side collected
parallel samples at the reference site was higher for endotoxin
(mean CV 17.7%, Pearson correlation 0.68, p<0:001) than for
PM10 (mean CV 1.9%; Pearson correlation 0.99, p<0:001).
Samples analyzed repeatedly for endotoxin in the laboratory on
different days showed high correlation and limited variability
between repeats (30 samples; mean CV 13.7%; Pearson correla-
tion 0.95, p<0:001). This documents the higher inherent vari-
ability for endotoxin compared with PM10 due to both sampling
and analytical variability. Endotoxin and PM10 mass concentra-
tions measured at the reference site during each 14-d period were
highly correlated with endotoxin and PM10 mass concentrations
averaged over the sites measured during the same time period
(Pearson correlation 0.75, p<0:001; 0.98, p<0:001, respec-
tively). Endotoxin concentrations were generally lower at the ref-
erence site compared with the average concentration of sites
measured during the same measurement period (Figure 2).

Spatial Variation
Annual average endotoxin concentrations ranged from 0.13 to
0:85EU=m3 (6.5-fold difference) between sites, PM10 mass

Figure 2. Overview of endotoxin (EU=m3) and PM10 (lg=m3) concentra-
tions measured during multiple 2-wk periods at 61 measurement sites,
and continuously at a reference (background) site, in a livestock-dense
area. Note: Sites avg, average concentration over all measurement sites
during the measurement period; RF site, reference site; sites, measure-
ment sites.
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concentrations from 14.4 to 23:1lg=m3 (1.6-fold difference).
More variation in annual average concentrations between sites
was observed for endotoxin compared with PM10 (between sites
CV 43%, 8%, respectively), Figure 3. Correlation between annual
average concentrations of endotoxin and PM10 was moderate (see
Figure S2). Table 2 shows descriptive statistics of measured con-
centrations at sites categorized by distance to nearest livestock
farm. Higher mean values for endotoxin were observed among
sites within the closer distance categories. Endotoxin concentra-
tions varied considerable among sites within the same distance
category (e.g., from 0.18 to 0:85EU=m3 for the 24 sites <250 m
from a farm) (Table 2). Mean PM10 mass concentrations did not
differ between the distance categories.

Exposure Proxies
Univariable linear regression models showed a high number of
livestock-related GIS variables potentially associated with endo-
toxin concentrations (see Table S2). All of the general livestock
characteristics (distance to nearest farm, number of farms within
buffer zones, and weighted distance number of all farms) were
associated with increased endotoxin concentrations, but none
explained >26% of the spatial variation in endotoxin concen-
trations (Table S2). Of the species-specific variables, pig- and
poultry-related variables were the most strongly related to

endotoxin concentrations. Of all univariable analyses, the pa-
rameter distance-weighted number of sows in a 1,000-m buffer
explained the largest amount of the variance in endotoxin con-
centrations (R2 = 0:35). This variable was highly correlated
with distance-weighted total number of pigs within a 1,000-m
buffer (Pearson correlations 0.77) but was not strongly corre-
lated with distance-weighted numbers of other animal species
(Pearson correlations −0:03 to 0.34) (see Figure S3 and Figures
S4–S6 for correlations among distance-weighted numbers of
animals within 1,000 m=3,000 m and numbers of farms within
1,000 m and 3,000 m, respectively).

LURModels
The three LUR models for endotoxin resulting from modeling
procedures including successively more detailed livestock-related
predictors are described in Table 3. Model residuals met the crite-
ria of normality, homoscedasticity, and spatial independency
(Moran’s I was not significant). The endotoxin LUR model based
on general livestock characteristics only (Model 1), included two
predictors (the number of farms in a 250-m buffer and the
distance-weighted number of farms in a buffer of 1,000 m) that
explained 30% of spatial variation (LOOCV R2 = 0:19, 10-fold
HV R2 = 0:10). Model 2, based on the modeling procedure incor-
porating also animal species–specific predictors, included three

Figure 3. Density plots depict variation in annual average concentrations of endotoxin and PM10 between 61 sites measured in a livestock-dense area.

Table 2. Overview of measured annual average concentrations of endotoxin and PM10 at the sites distributed over four distance categories related to distance
to closest farm.

Distance to nearest
livestock farm Number of sites

Endotoxin (units=m3) PM10 (lg=m3)

AM SD Minimum Maximum AM SD Minimum Maximum

<250 m 24 0.36 0.17 0.18 0.85 19.1 1.5 16.7 23.1
250–500 m 21 0.29 0.11 0.2 0.58 18.4 1.5 14.4 20.3
500–1,000 m 11 0.25 0.04 0.19 0.31 18 1.4 16.1 19.9
>1,000 m 5 0.24 0.06 0.13 0.29 18.9 1.1 17.7 20.5

Note: AM, arithmetic mean; SD, standard deviation.
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predictors (related to pigs, poultry, and horses, respectively) and
had a considerably higher amount of explained spatial variation
(48%) (LOOCV R2 = 0:37, 10-fold HV R2 = 0:22). Model 3,
based on the modeling procedure that additionally incorporated
farm type–specific predictors, included four predictors and
explained even more spatial variation compared with Model 2,
with an R2 of 64% (LOOCV R2 = 0:51, 10-fold HV R2 = 0:32).
Different types of predictors were considered in the models,
including animal densities, farm densities, and distance-weighted
characteristics. The same animal species (pigs, poultry, and
horses) were included in Model 3 as in Model 2.

As for endotoxin LUR models, PM10 LUR model perform-
ance improved as more specific livestock-related predictors were
taken into account. PM10 LUR models included different and
fewer predictors (1 for Models 1 and 2, 2 for Model 3) and the
spatial variance explained was lower than for the endotoxin LUR
models (R2 values of 0.08, 0.14, and 0.19 for Models 1, 2, and 3,
respectively) (see Table S3).

In a sensitivity analysis, we repeated endotoxin and PM10
modeling considering general, species-specific, and farm
type–specific predictors (modeling procedure 3) but allowed
predictors with only 15% of sites with nonzero values (vs.
one-third in the primary analyses) (Table S4). The resulting
endotoxin LUR model included one new predictor (the number
of pigs in a 250-m buffer), in addition to the four predictors in
the primary model, and had a slightly higher R2 (0.66 vs.
0.64). The PM10 LUR model included three predictors, none
of which were in the primary model, and had a higher R2 (0.31
vs. 0.19).

Discussion
This study, with 61 measurement sites distributed over a
livestock-dense area, shows clear spatial variation in annual av-
erage endotoxin concentrations associated with livestock den-
sity. Thus, residential exposures to endotoxin are variable
within one region, providing great opportunities for LUR mod-
eling. To our knowledge, LUR modeling as described in this
study has not been applied for endotoxin before. The LUR
models developed explain spatial variation of endotoxin con-
centrations to a large extent. General livestock characteristics,
such as livestock density or distance to the nearest farm, which

have been used as exposure proxies in previous epidemiological
studies (Borlée et al. 2015; Elliott et al. 2004; Mirabelli et al.
2006; Pavilonis et al. 2013b; Radon et al. 2007; Sigurdarson
and Kline 2006; Smit et al. 2014; Wing and Wolf 2000), were
positively and statistically significantly associated with endo-
toxin concentrations, although spatial variation explained was
limited. Models using a combination of animal species-specific
and farm type–specific predictors performed notably better.
Mean endotoxin concentrations measured at sites <250 m from
a livestock farm were 50% higher than mean concentrations
measured at sites >1,000 m from a farm (0.36 vs. 0:24EU=m3,
Table 2), indicating a sizable contrast in exposure. The large
variability in endotoxin concentrations within distance catego-
ries suggests the importance of farm characteristics (size, ani-
mal species). Annual average concentrations of endotoxin were
not represented well by PM10. Annual average PM10 mass con-
centrations showed more limited spatial variation and a differ-
ent spatial pattern. PM10 is, compared with endotoxin, likely a
less specific pollutant for livestock farming and PM10 mass
concentrations in the studied area are characterized by a high
background. The low spatial variability of PM10 is comparable
to studies focusing on urban settings, where the spatial varia-
tion of PM10 and PM2:5 (PM ≤2:5 lm) is also lower than more
source-specific components of PM such as elemental carbon
(Eeftens et al. 2012a; Jedynska et al. 2014).

Concentrations Measured
Until now, only measurement studies including a limited number
of sites have been performed to characterize airborne endotoxin
in the rural environment (de Rooij et al. 2017; Heederik and
Ijzermans 2011; Mueller-Anneling et al. 2004; Pavilonis et al.
2013a; Schulze et al. 2006; Tager et al. 2010). Measured concen-
trations were generally comparable (within the same order of
magnitude) for the different studies; however, a detailed compari-
son is not possible because of differences in methodology, includ-
ing sampling of different particle size fractions (majority PM10,
one study including coarse fraction (Tager et al. 2010), and one
study including inhalable fraction (Schulze et al. 2006) averaging
times and sampling strategies. Two small studies (one including
five sites, the other eight sites) using similar methods as in

Table 3. Endotoxin LUR models resulting from three modeling procedures: a) considering general livestock variables only, b) considering general plus animal
species–specific variables, c) considering general plus animal species–specific plus farm type–specific variables.
Model Variables (scaled to 10–90th percentile range) 10th Percentile 90th Percentile Estimate (90% CI)

Model 1
Model R2: 0.30
Model adj. R2: 0.27
LOOCV R2: 0.19
HV R2: 0.10

Intercept – – 0.177 (0.094, 0.258)
Number of livestock farms in a 250-m buffer 0 2 0.091 (0.033, 0.148)
Number of livestock farms weighted to distance in
a 3,000-m buffer [R (m−1)]

0.003 0.041 0.091 (0.007, 0.175)

Model 2
Model R2: 0.48
Model adj. R2: 0.45
LOOCV R2: 0.37
HV R2: 0.22

Intercept – – 0.082 (0.003, 0.160)
Inversed distance to nearest pig farm (m−1) 0.001 0.006 0.169 (0.111, 0.227)
Number of poultry animals weighted to distance in
a 3,000-m buffer [R (n/distance in m)]

42.573 1014.177 0.112 (0.050, 0.173)

Number of horse farms in a 3,000 m buffer 8 18 0.065 (0.006, 0.123)
Model 3
Model R2: 0.64
Model adj. R2: 0.61
LOOCV R2: 0.51
HV R2: 0.32

Intercept – – 0.122 (0.057, 0.186)
Number of sows weighted to distance in a 1,000-m
buffer [R (n/distance in m)]

0 5.803 0.148 (0.107, 0.189)

Number of laying hens weighted to distance in a 3,000-m
buffer [R (n/distance in m)]

3.465 376.545 0.114 (0.062, 0.167)

Number of poultry animals in 500-m buffer 0 77,136 0.086 (0.040, 0.131)
Number of horse farms in a 3,000-m buffer 8 18 0.063 (0.014, 0.111)

Note: Endotoxin concentrations were annual average concentrations (EU=m3) measured at 61 sites in a livestock-dense area. Model 1 resulted from the modeling procedure taking
into account only general livestock variables; Model 2 resulted from the modeling procedure taking into account general plus animal species–specific variables; Model 3 resulted from
the modeling procedure taking into account general plus animal species–specific plus farm type–specific variables. See Table S2 for a complete list of variables included in each group.
Predictor variables were truncated to the 95th percentile and then scaled to the 10–90th percentile range, thus predictor values were divided by the 10–90th percentile range of that pre-
dictor. –, no data; CI, confidence interval; HV, hold-out validation; LOOCV, leave one out cross validation; Model adj. R2, model adjusted R2.

Environmental Health Perspectives 017003-7



the current study reported ranges of 0:21–0:31EU=m3 and
0:46–0:66EU=m3, respectively (de Rooij et al. 2017; Heederik
and Ijzermans 2011). Spatial variation measured between rural
sites in these studies was less compared with the current study,
which included a high number of sites (61) and specifically
focused on sampling of a variety of sites in a livestock-dense
area.

Agreement and correlation of parallel, side-by-side, measured
endotoxin concentrations at the reference site was considerable
but not close to 1 as for parallel-measured PM10 levels. This is
similar to what we observed previously (de Rooij et al. 2017).
Analytical variability only partly explains the differences observed
for parallel collected samples. The residual variability could be
caused by high very local-scale (within meters) variation for endo-
toxin. This is likely related to the profound influence of local sour-
ces with variable emission strength and to the endotoxins’ origin:
bacteria, which can coagulate, grow, and amplify (de Rooij et al.
2017). Moderate side-by-side correlation has implications for
assessment of the model R2; model R2 should in that case not be
set against 100%. That is, the moderate side-by-side correlation
measured for endotoxin will reduce the percent explained variance
of models based on endotoxin measurements.

Exposure Proxies in Epidemiology
Health surveys that explored livestock-associated health effects
have used simple and general livestock characteristics as expo-
sure proxies, including farm density in a buffer and various dis-
tance measures (Borlée et al. 2015; Elliott et al. 2004; Pavilonis
et al. 2013b; Radon et al. 2007; Smit et al. 2014; Wing and Wolf
2000). All general livestock characteristics explored in this study
were significantly associated with measured endotoxin concentra-
tions. In particular, spatial variation explained by the number of
farms in buffers was encouraging (R2 ≤ 0:26, given the relative
simplicity and crudeness of these proxies. This provides evidence
of the usefulness of general livestock characteristics used as ex-
posure proxies. However, explained spatial variation was modest,
particularly for the simple distance metrics, leaving room for
improvement of endotoxin exposure estimation. The restrictions
of simple distance metrics were also demonstrated in the study
by Cantuaria et al. (2016), in which different approaches for
assessing ammonia exposure in rural areas were compared.
Models that improve exposure estimation should be preferred
over the use of proxies as exposure misclassification can give rise
to biased results and/or loss of precision (Armstrong 1998).

LURModels
To our knowledge, this study is the first to apply an LUR
approach for endotoxin in a rural area, showing that spatial varia-
tion of annual average endotoxin concentrations can be explained
well by (refined) livestock information. The explained spatial
variation of the endotoxin LUR model based on refined livestock
information was high, especially when taking into account the
moderate correlation of parallel samples. The better performance
of models with refined livestock predictors is in line with results
from studies measuring on farms, in which concentrations of en-
dotoxin differ between animal species kept but also between spe-
cific farm type (i.e., broilers vs. laying hens) and farm size
(number of animals) (Ogink et al. 1997; Seedorf et al. 1998).

All endotoxin models contained distance and density of ani-
mal/farm metrics underlining the importance of the number in
combination with proximity of sources. An array of buffer sizes
was taken into account in the modeling to ensure capturing rele-
vant distances. Predictors eventually included in the models rep-
resented small buffer as well as larger buffer sizes, reflecting the

influence of farms at close distances and the collective impact of
farms in the area. Predictors related to the animal species poultry
and pigs prevailed. Considering that LUR models are not source
attribution models, these results are in line with previous studies
suggesting substantial endotoxins emissions of especially poultry
farms but also pig farms (Seedorf et al. 1998). Animal species
represented in the LUR model, which included all available live-
stock predictors (including farm type–specific information), were
highly comparable to simpler models indicating good modeling
consistency. Effect estimates for the in Model 3 included varia-
bles (scaled to 10–90th percentile) were comparable to each
other, none had a strikingly outlying value. Contributions to am-
bient concentrations of a specific animal type depend on individ-
ual source strength of a farm and the number of those farms
present. In our study area, the number of poultry farms was con-
siderably lower compared with pig farms and cattle farms; how-
ever, poultry farms are known to have high emissions (Seedorf
et al. 1998). The combination of variation in numbers present of
specific farm types and variation in emission levels of these farm
types might explain the relatively similar effect estimates.

In contrast to the endotoxin LUR models, the LUR models
for PM10 were less successful in explaining spatial variation of
annual average concentrations in relation to livestock informa-
tion. PM10 mass concentrations were more poorly associated
with livestock presence, few associated livestock-related charac-
teristics were found, especially in the smaller buffer sizes. Spatial
variation could not be explained by an LUR model developed
earlier for urban air pollution exposure as part of the ESCAPE
project (Eeftens et al. 2012a) for Netherlands/Belgium (R2 0.003
for this model used on our 61 sites). This is probably explained
by the rural character of the study area and our sampling strategy
in which traffic-affected sites were avoided to focus on PM10 var-
iability related to livestock emissions.

Model Evaluation
Model evaluation is important as LUR modeling has the risk of
overfitting with potentially a large number of predictor variables
taken into account to explain concentrations at relatively few
sites. To limit the risk of overfitting several precautionary meas-
ures were applied before and during modeling including inclusion
of a large number of sampling sites. The number of 61 sites
included in the current study is generally considered sufficient for
LUR modeling of urban predominantly traffic-related air pollu-
tion studies (Hoek et al. 2008; Ryan and LeMasters 2007). The
number of predictor variables offered was highest in the most
refined model. The difference in R2 between the three LUR mod-
els, however, does not simply reflect model overfitting by
offering more predictor variables in the modeling procedure
because the same pattern in performance was found for valida-
tion statistics.

The gap between endotoxin LUR model R2 and R2 of
LOOCV and especially HV was larger than expected based upon
the number of sites included. Previous studies evaluating the
effect of number of sites on nitrogen dioxide (NO2) LUR model
validation reported smaller differences (Basagaña et al. 2012;
Wang et al. 2012). This might be explained by more substantial
variation at source level for endotoxin. Seedorf et al. (1998)
showed not only that indoor endotoxin levels differ between
farms of the same type within the same country, but also that dif-
ferences within the same farm at different time points can be
substantial. Other studies measuring endotoxin concentrations
on farms and/or at farm premises also detected considerable dif-
ferences in endotoxin concentrations over time, suggesting vary-
ing endotoxin emissions (Ogink et al. 1997; Thorne et al. 2009).
Studies on PM10 emissions found similar results and differences
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between and within farms were suggested to be related to, among
other factors, production cycle and farm management (Winkel
et al. 2015). Livestock data incorporated involved farm location,
farm type, and permitted animal numbers. Information related to
specific individual farm characteristics was not available. The
effect of the higher source level variability for endotoxin might
increase even more as a result of geographic uncertainty on farm
emission points. Consequently LUR modeling of endotoxin con-
centrations on the basis of livestock data can be regarded as more
challenging than modeling of air pollution in relation to urban
predominantly traffic-related sources.

Health Implications
The long-term average concentrations were higher at sites with
more livestock production in the surroundings, but markedly
below concentrations known to cause endotoxin-related health
effects. Occupational studies do not report health effects for con-
centrations observed in this study (Basinas et al. 2015; Liebers
et al. 2006; Samadi et al. 2013). However, direct inferences can-
not be made because results from those studies specifically apply
for a short duration of exposure (around 4–8 h) in a healthy
worker population. Moreover, different size fractions (mainly
inhalable or respirable dust) were sampled in those studies, and it
is unknown how health effects can be allocated to specific parti-
cle size fractions. Identified elevated long-term average concen-
trations in our study are likely associated with a higher frequency
and level of peak exposures because emissions from farms are
not constant and distribution depends on, among other factors,
atmospheric conditions including wind direction, speed, atmos-
pheric stability, and mixing layer height. Results of studies meas-
uring short-term (several hours) at farm premises indicate the
occurrence of such peaks: concentrations of 30 EU=m3 and far
above were measured (Jonges et al. 2015; Thorne et al. 2009).
More knowledge on exposure levels over different averaging
times and different particle size fractions in relation to health
effects in the general population is urgently required.

Study Limitations
Endotoxin concentrations were measured in the PM10 fraction,
no information was obtained on endotoxin concentrations in other
size fractions. Studies measuring ambient endotoxin in PM2:5 and
PM10 showed higher concentrations in the PM10 fraction (Chen
and Hildemann 2009; Morgenstern et al. 2006; Pavilonis et al.
2013a; Soukup and Becker 2001), suggesting underestimation of
concentrations when assessing particle size fraction smaller than
PM10. Studies comparing ambient endotoxin concentrations in
multiple size fractions, including size fractions larger than PM10,
are lacking. Furthermore, knowledge on the distribution of endo-
toxin over particle size fractions in air emitted from farms is lim-
ited. Studies that included multiple size fractions were either
small in size and included only one farm type (Kirychuk et al.
2010; Schaeffer et al. 2017) or included many farms of various
types but only two size fractions (inhalable and respirable)
(Seedorf et al. 1998). Nonetheless, size fractions larger than
10 lm may potentially yield considerable endotoxin concentra-
tions. The impact of this on residential level is yet unknown.
Dispersion of particles larger than 10 lm is generally limited to
shorter distances, but under specific conditions (including high
wind speed), dispersion may be more extensive. In our study
area, the vast majority of people did not live within a few hun-
dreds of meters of farms. Furthermore, particles larger than PM10
are not small enough to penetrate the tracheobronchial and alveo-
lar regions of the respiratory tract. In general, deeper penetration
of an air pollution component is accompanied with increased

health effects, but whether this also applies for endotoxin is not
yet known. We decided to focus on the PM10 fraction in the cur-
rent study; however, obtaining more insight into levels of endo-
toxin in different size fractions, including particles larger than
10 lm, in ambient air is of the utmost importance.

The supervised stepwise selection approach used selects the
model with the highest adjusted R2. However, differences in
adjusted R2 may be small between models including a slightly
different set of correlated predictor variables. Thus, there is no
single absolute LUR model to explain spatial variation of a com-
ponent in a specific area. Hence, predictors not included in the
model are not necessarily unassociated with ambient endotoxin.

No temporal livestock data was available. Information avail-
able included animal species and numbers based on licensed
data, thus numbers of animals that were actually present at the
time of measurement may have differed. Furthermore, no data on
manure management was available, which may have an environ-
mental impact as well. Management of manure at the farm has
been described to affect farmers’ personal inhalable dust and en-
dotoxin exposure (Basinas et al. 2014). In Netherlands, manure
storage at the farm can be in reservoirs under- or aboveground.
Manure is stored until application or treatment. Land application
of manure is allowed solely during a specific period of the year
and depends on soil type, land use, and manure type. Manure
application is mostly done via injection into the soil.

Recommendations
To our knowledge, LUR modeling as described in this study has
not been described earlier for endotoxin. Relevant insights were
gained of use worldwide, although modeling results are not
directly applicable to other countries. Studies on transferability of
LUR models showed that models for air pollution in urban set-
tings are best developed locally as performance is less when
applied to other areas (Hoek et al. 2008; Jerrett et al. 2005; Ryan
and LeMasters 2007). Substantial differences in farming practices
worldwide enhance transferability limitations of LUR models
developed in this study. Yet, knowledge obtained in the current
study gives guidance for the optimization of similar campaigns in
other parts of the world, which would then allow for compari-
sons. Not only does this apply for implementation of LUR
modeling for endotoxin, but this can also be of use for other bio-
aerosols. The model evaluation results suggest that LUR model-
ing of bioaerosol concentrations in relation to livestock requires a
larger set of sites compared with urban air pollution studies.
Bioaerosol concentrations in general are known to be more vari-
able than inert or chemical exposures; therefore, more measure-
ments are needed for accurate exposure assessment (Spaan et al.
2008b). Additionally, in the case of highly variable and heteroge-
neous sources like the livestock farming industry, more sampling
sites should be included to capture this well. To diminish the
impact of very local-scale variation, sampling in parallel at all
sites should be considered.

Detailed geographical data on sources, in this case livestock
farm characteristics, is important for LUR modeling. Availability
of temporal livestock data and alternative study designs would
add to modeling possibilities. The design of the current measure-
ment campaign was aimed at developing spatial LUR models.
Multiple long-term measurements were performed, one measure-
ment per season, in order to obtain annual average concentrations.
For development of spatiotemporal models, besides availability
of temporal livestock data and local meteorological conditions,
consecutively short-term measurements are recommended. Then
insight can be gained into temporal effects, as meteorological con-
ditions, and likely also livestock emissions, can vary substantially
within short periods of time. Obtaining multiple samples per
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season is recommended for development of seasonal models.
Integration of dispersion models into the LUR framework is
another interesting option. This approach has been recently
applied for NO2 and PM2:5 by de Hoogh et al. (2016). However,
more information on endotoxin emissions from different animal
species is needed before this approach can be applied for the mod-
eling of endotoxin in relation to livestock.

Conclusion
Substantial spatial variation of annual average endotoxin con-
centrations was found for 61 residential sites in a livestock-
dense area based on measurements of aerosolized endotoxin in
the PM10 fraction. PM10 mass concentration did not appear to
be a good surrogate measure of livestock-related ambient endo-
toxin, as spatial variation of PM10 was limited, and did not reflect
the spatial variation in endotoxin concentrations. The LUR
approach used was successful in explaining variation of endotoxin
concentrations between sites on the basis of livestock-related
characteristics of the surroundings. LUR models based on a com-
bination of animal-specific livestock-related characteristics per-
formed markedly better than crude proxies. Based on these
results, application of the developed endotoxin LUR model is
promising for exposure estimation at home addresses of health
study participants residing within the same livestock-dense area.
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